Technological watch

Recycling of natural fiber composites: Challenges and opportunities

Natural fibers have been widely used for reinforcing polymers attributed to their sustainable nature, excellent stiffness to weight ratio, biodegradability, and low cost compared with synthetic fibers like carbon or glass fibers. Thermoplastic composites offer an advantage of recyclability after their service life, but challenges and opportunities remain in the recycling of natural fiber reinforced polymer composites (NFRPCs). This article summarized the effects of reprocessing/recycling on the material properties of NFRPCs. The material properties considered include mechanical performance, thermal properties, hygroscopic behavior, viscoelasticity, degradation, and durability. NFRPCs can generally be recycled approximately 4–6 times until their thermomechanical properties change. After recycling 7 times, the tensile strength of NFRPCs can decrease by 17%, and the tensile modulus can decrease by 28%. The mitigation approaches to overcome degradation of material properties of NFRPCs such as adding functional additives and virgin plastics are also discussed. The main challenges in these approaches such as degradation and incompatibility are discussed, and an effort is made to provide a rationale for reprocessing/recyclability assessment. Future applications of NFRPCs such as additive manufacturing and automotive part use are discussed.

Publication date: 01/02/2022

Author: Xianhui Zhao, Katie Copenhaver, Lu Wang, Matthew Korey, Douglas J. Gardner, Kai Li, Meghan E. Lamm, Vidya Kishore, Samarthya Bhagia, Mehdi Tajvidi, Halil Tekinalp, Oluwafemi Oyedeji, Sanjita Wasti, Erin Webb, Arthur J. Ragauskas, Hongli Zhu, William H. P

Resources, Conservation and Recycling

This project has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE17 ENV/ES/000438] Life programme

The website reflects only the author's view. The Commission is not responsible for any use thay may be made of the information it contains.
Last update: 2022-01-31