Technological watch

Continuum targets facility capacity, transforms composite materials to advance wind blade recycling

Denmark-based Continuum Composite Recycling was founded to target the wind blade recycling initiative taking place across the globe. In order to abandon landfilling and to significantly reduce the CO2 emitted during current “recycling” processes like incineration and co-processing in cement facilities, Continuum is targeting composite material transformation to achieve more eco-friendly, fully recyclable wind turbine blades. The company is also anticipating the need for increased recycling capacity, expecting to develop several industrial-scale factories. Combined, Continuum believes it can reduce wind blade disposal by 100 million tonnes by 2050.

“As a society we are rightly focused on renewable energy production, however the subject of what to do with wind turbine blades in the aftermath of that production has not been effectively addressed,” Nicolas Derrien, CEO of Continuum Holdings ApS, says per the offshoreWIND.biz announcement. “We’re changing that, offering a recycling solution for the blades and a construction product that will outperform most other existing construction materials and be infinitely recyclable, and with the lowest carbon footprint in its class.”

To achieve its goals, Continuum is reusing composites via a CO2-neutral transformation technology — final material is said to be made up of 92% recycled material. This material is used to created composite panels for the construction industry and the manufacture of day-to-day products such as facades, industrial doors and kitchen countertops. Per a technical overview on the company’s website, Continuum describes its material transformation process:

  • Continuum organizes the transport and logistics of feedstocks from wind blades, automotive, marine and manufacturing waste — primarily glass fiber/polyurethane (GRP/PUR) — to its facility according to client needs.
  • During material reclamation and reprocessing, the company mechanically transforms and separates feedstock materials back into their raw, basic constituents through a variety of process such as cutting, milling, breaking, screening, gravity-separating, sorting, sifting, cleaning and storing. The system is said to optically sort out formerly embedded carbon fiber; all ferrous and non-ferrous metals and pollutants are separated and sent off for further recycling.
    • Fibers (glass, carbon fiber, etc.) are cut to

Publication date: 13/01/2023

Composites World (Products)

This project has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE17 ENV/ES/000438] Life programme

The website reflects only the author's view. The Commission is not responsible for any use thay may be made of the information it contains.
Last update: 2022-01-31