Technological watch

Spray pyrolysis of conductor- and binder-free porous FeS 2 films for high-performance lithium ion batteries

Abstract Automobiles evolved from primarily mechanical to electro-mechanical, or mechatronic, vehicles. For example, carburetors have been replaced by fuel injection and air-fuel ratio control, leading to order of magnitude improvements in fuel economy and emissions. Mechatronic systems are pervasive in modern automobiles and represent a synergistic integration of mechanics, electronics and computer science. They are smart systems, whose design is more challenging than the separate design of their mechanical, electronic and computer/control components. In this review paper, two recent methods for the design of mechatronic components are summarized and their applications to problems in automotive control are highlighted. First, the combined design, or co-design, of a smart artifact and its controller is considered. It is shown that the combined design of an artifact and its controller can lead to improved performance compared to sequential design. The coupling between the artifact and controller design problems is quantified, and methods for co-design are presented. The control proxy function method, which provides ease of design as in the sequential approach and approximates the performance of the co-design approach, is highlighted with application to the design of a passive/active automotive suspension. Second, the design for component swapping modularity (CSM) of a distributed controller for a smart product is discussed. CSM is realized by employing distributed controllers residing in networked smart components, with bidirectional communication over the network. Approaches to CSM design are presented, as well as applications of the method to a variable-cam-timing engine, and to enable battery swapping in a plug-in hybrid electric vehicle.

Publication date: 01/03/2019

Reference: 10.1007/s11465-019-0527-0

Applied Composite Materials

This project has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE17 ENV/ES/000438] Life programme

The website reflects only the author's view. The Commission is not responsible for any use thay may be made of the information it contains.
Last update: 2019-09-18